Proof Of Concept Digitalisasi Sektor Pertanian

M. Mujiya Ulkhaq, Widhi Netraning Pertiwi, Wijayanto Wijayanto, Lina Wardiya Ningsih

Abstract


ABSTRAK
Sebelum suatu kebijakan publik diluncurkan, perlu untuk melakukan proof of concept (PoC)—biasanya berskala kecil—guna menunjukkan kelayakan dari kebijakan tersebut. Selain itu, PoC juga dilakukan untuk memberikan bukti bahwa suatu sumber daya yang sudah dimanfaatkan dalam suatu kebijakan dikeluarkan seefisien mungkin, dan bahwa kebijakan tersebut sudah terbukti dengan baik dan dapat dilakukan dalam skala yang lebih besar. Penelitian ini membahas mengenai langkah-langkah melakukan PoC adopsi teknologi di sektor pertanian. Adopsi teknologi yang dimaksud adalah penggunaan perangkat internet of things (IoT) yang dilengkapi sensor tanah dan cuaca untuk mendukung proses budidaya pertanian. Perangkat IoT tersebut diharapkan mampu untuk meningkatkan hasil produksi pertanian serta menurunkan biaya produksi pertanian. Langkah-langkah dalam melakukan PoC dalam adopsi teknologi di sektor pertanian adalah: (i) pra-perencanaan, (ii) perencana-an program, (iii) pra-implementasi, (iv) implementasi program, serta (v) evaluasi dampak.


Kata kunci: adopsi teknologi, digitalisasi, pertanian, proof of concept

 

ABSTRACT
Prior to the launching of a public policy, it is necessary to conduct a proof of concept (PoC)—usually on a small scale—to demonstrate the feasibility of the policy. PoC is conducted also to provide an evidence that resources that have been used in that policy is spent efficiently, and that the policy has been well proven and can be implemented on a larger scale. This study discusses the steps to conduct PoC of technology adoption in the agricultural sector. The technology adoption is the use of internet of things (IoT) device which is equipped with soil and weather sensors to support the agricultural pactices. The IoT device is expected to increase agricultural production crops and reduce agricultural production costs. The steps in conducting PoC of technology adoption in the agricultural sector are: (i) pre-planning, (ii) planning the program, (iii) pre-piloting, (iv) piloting or implementing the program, and (v) impact evaluation.

Key words: agriculture, digitalization, proof of concept, technology adoption


Full Text:

PDF

References


DAFTAR PUSTAKA

Badan Pusat Statistik (2021). Hasil sensus penduduk 2020. Berita Resmi Statistik No. 7/01/Th. XXIV, 21 Januari 2021. Jakarta: Badan Pusat Statistik.

Badan Pusat Statistik (2020). Penduduk 15 tahun ke atas yang bekerja menurut lapangan pekerjaan utama 1986 – 2020, dari https://www.bps.go.id/statictable/2009/04/16/970/penduduk-15-tahun-ke-atas-yang-bekerja-menurut-lapangan-pekerjaan-utama-1986---2020.html.

Merriam-Webster. (n.d.). Proof of concept. In Merriam-Webster.com dictionary. Diakses 21 Juni 2021, dari https://www.merriam-webster.com/dictionary/proof%20of%20concept

Kendig, C. E. (2016). What is proof of concept research and how does it generate epistemic and ethical categories for future scientific practice? Science and Engineering Ethics, 22, 735-753.

National Science Foundation (2014). Program solicitation: Accelerating innovation research-technology transla-tion (NSF 14-569). Directorate for Engi-neering, Industrial Innovation and Part-nerships. Diakses 21 Juni 2021, dari https://www.nsf.gov/pubs/2014/nsf14569/nsf14569.htm

Chassang, S., Miquel, G., & Snowberg, E. (2012). Selective trials: A principal-agent approach to randomized controlled experiments. The American Economic Review, 102(4), 1279-1309.

Banerjee, A., Banerji, R., Berry, J., Duflo, E., Kannan, H., Mukerji, S., Shotland, M., & Walton, M. (2017). From proof of concept to scalable policies: Challenges and solutions, with an Application. Journal of Economic Perspectives, 31(4), 73–102.

Laukat, T. (2020). Software vendor selection using proof of concepts. Seminar IT-Management in the Digital Age, Wedel, Germany.

Gertler, P. J., Martinez, S., Premand, P., Rawlings, L. B., & Vermeersch, C. M. J. (2016). Impact Evaluation in Practice (2nd ed.). Washington, D.C.: Inter-American Development Bank and World Bank.

Khandker, S. R., Koolwal, G. B., & Samad, H. A. (2010). Handbook on Impact Evaluation: Quantitative Methods and Practices. Washington, D.C.: World Bank.

Imbens, G.W. & Rubin, D.B. (2008). Rubin causal model. In S.N., Durlauf & L.E., Blume (Eds.). The New Palgrave Dictionary of Economics (2nded.).


Refbacks

  • There are currently no refbacks.